Interaction of riluzole with the closed inactivated state of Kv4.3 channels.

نویسندگان

  • Hye Sook Ahn
  • Sung Eun Kim
  • Hyun-Jong Jang
  • Myung-Jun Kim
  • Duck-Joo Rhie
  • Shin-Hee Yoon
  • Yang-Hyeok Jo
  • Myung-Suk Kim
  • Ki-Wug Sung
  • Sang June Hahn
چکیده

The effect of riluzole on Kv4.3 was examined using the whole-cell patch-clamp technique. Riluzole inhibited the peak amplitude of Kv4.3 in a reversible, concentration-dependent manner with an IC(50) of 115.6 microM. Under control conditions, a good fit for the inactivation of Kv4.3 currents to a double exponential function, with the time constants of the fast component (tau(f)) and the slow component (tau(s)), was obtained. tau(f) was not altered by riluzole at concentrations up to 100 microM, but tau(s) became slower with increasing riluzole concentration, resulting in the crossover of the currents. The inhibition increased steeply with increasing channel activation at more positive potentials. In the full activation voltage range positive to (+)30 mV, however, no voltage-dependent inhibition was found. Riluzole shifted the voltage dependence of the steady-state inactivation of Kv4.3 in the hyperpolarizing direction in a concentration-dependent manner. However, the slope factor was not affected by riluzole. The K(i) for riluzole for interacting with the inactivated state of Kv4.3 was estimated from the concentration-dependent shift in the steady-state inactivation curve and was determined to be 1.2 muM. Under control conditions, closed state inactivation was fitted to a single exponential function. Riluzole caused a substantial acceleration in the closed state inactivation. In the presence of riluzole, the recovery from inactivation was slower than under control conditions. Riluzole induced a significant use-dependent inhibition of Kv4.3. These results suggest that riluzole inhibits Kv4.3 by binding to the closed inactivated state of the channels and that the unbinding of riluzole occurs from the closed state during depolarization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of ranolazine on cloned cardiac kv4.3 potassium channels.

The effects of ranolazine, an antianginal drug, on potassium channel Kv4.3 were examined by using the whole-cell patch-clamp technique. Ranolazine inhibited the peak amplitude of Kv4.3 in a reversible, concentration-dependent manner with an IC(50) of 128.31 μM. The activation kinetics were not significantly affected by ranolazine at concentrations up to 100 μM. Applications of 10 and 30 μM rano...

متن کامل

Inhibition of Kv4.3 by genistein via a tyrosine phosphorylation-independent mechanism.

The effects of genistein, a protein tyrosine kinase (PTK) inhibitor, on voltage-dependent K(+) (Kv) 4.3 channel were examined using the whole cell patch-clamp techniques. Genistein inhibited Kv4.3 in a reversible, concentration-dependent manner with an IC(50) of 124.78 μM. Other PTK inhibitors (tyrphostin 23, tyrphostin 25, lavendustin A) had no effect on genistein-induced inhibition of Kv4.3. ...

متن کامل

Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels.

The effects of riluzole, a neuroprotective drug, on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channels in rat dorsal root ganglion neurons were studied using the whole-cell patch clamp technique. At the resting potential, riluzole preferentially blocked TTX-S sodium channels, whereas at more negative potentials, it blocked both types of sodium channels almost equa...

متن کامل

Non-Native R1 Substitution in the S4 Domain Uniquely Alters Kv4.3 Channel Gating

The S4 transmembrane domain in Shaker (Kv1) voltage-sensitive potassium channels has four basic residues (R1-R4) that are responsible for carrying the majority of gating charge. In Kv4 channels, however, R1 is replaced by a neutral valine at position 287. Among other differences, Kv4 channels display prominent closed state inactivation, a mechanism which is minimal in Shaker. To determine if th...

متن کامل

S3b amino acid substitutions and ancillary subunits alter the affinity of Heteropoda venatoria toxin 2 for Kv4.3.

Heteropoda venatoria toxin 2 (HpTx2) is an inhibitor cystine knot (ICK)-gating modifier toxin that selectively inhibits Kv4 channels. To characterize the molecular determinants of interaction, we performed alanine scanning of the Kv4.3 S3b region. HpTx2-Kv4.3 interaction had an apparent K(d) value of 2.3 microM. Two alanine mutants in Kv4.3 increased K(d) values to 6.4 microM for V276A and 25 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 319 1  شماره 

صفحات  -

تاریخ انتشار 2006